Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(6): e98994, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24933020

RESUMO

Biotic indices, which reflect the quality of the environment, are widely used in the marine realm. Sometimes, key species or ecosystem engineers are selected for this purpose. This is the case of the Mediterranean seagrass Posidonia oceanica, widely used as a biological quality element in the context of the European Union Water Framework Directive (WFD). The good quality of a water body and the apparent health of a species, whether or not an ecosystem engineer such as P. oceanica, is not always indicative of the good structure and functioning of the whole ecosystem. A key point of the recent Marine Strategy Framework Directive (MSFD) is the ecosystem-based approach. Here, on the basis of a simplified conceptual model of the P. oceanica ecosystem, we have proposed an ecosystem-based index of the quality of its functioning, compliant with the MSFD requirements. This index (EBQI) is based upon a set of representative functional compartments, the weighting of these compartments and the assessment of the quality of each compartment by comparison of a supposed baseline. The index well discriminated 17 sites in the north-western Mediterranean (French Riviera, Provence, Corsica, Catalonia and Balearic Islands) covering a wide range of human pressure levels. The strong points of the EBQI are that it is easy to implement, non-destructive, relatively robust, according to the selection of the compartments and to their weighting, and associated with confidence indices that indicate possible weakness and biases and therefore the need for further field data acquisition.


Assuntos
Alismatales/crescimento & desenvolvimento , Monitorização de Parâmetros Ecológicos/métodos , Poluentes da Água/análise , Biota , Humanos , Mar Mediterrâneo , Qualidade da Água
2.
PLoS One ; 8(11): e81067, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24303030

RESUMO

Gelatinous zooplankton outbreaks have increased globally owing to a number of human-mediated factors, including food web alterations and species introductions. The invasive ctenophore Mnemiopsis leidyi entered the Black Sea in the early 1980s. The invasion was followed by the Azov, Caspian, Baltic and North Seas, and, most recently, the Mediterranean Sea. Previous studies identified two distinct invasion pathways of M. leidyi from its native range in the western Atlantic Ocean to Eurasia. However, the source of newly established populations in the Mediterranean Sea remains unclear. Here we build upon our previous study and investigate sequence variation in both mitochondrial (Cytochrome c Oxidase subunit I) and nuclear (Internal Transcribed Spacer) markers in M. leidyi, encompassing five native and 11 introduced populations, including four from the Mediterranean Sea. Extant genetic diversity in Mediterranean populations (n = 8, N a = 10) preclude the occurrence of a severe genetic bottleneck or founder effects in the initial colonizing population. Our mitochondrial and nuclear marker surveys revealed two possible pathways of introduction into Mediterranean Sea. In total, 17 haplotypes and 18 alleles were recovered from all surveyed populations. Haplotype and allelic diversity of Mediterranean populations were comparable to populations from which they were likely drawn. The distribution of genetic diversity and pattern of genetic differentiation suggest initial colonization of the Mediterranean from the Black-Azov Seas (pairwise F ST = 0.001-0.028). However, some haplotypes and alleles from the Mediterranean Sea were not detected from the well-sampled Black Sea, although they were found in Gulf of Mexico populations that were also genetically similar to those in the Mediterranean Sea (pairwise F ST = 0.010-0.032), raising the possibility of multiple invasion sources. Multiple introductions from a combination of Black Sea and native region sources could be facilitated by intense local and transcontinental shipping activity, respectively.


Assuntos
Ctenóforos , Animais , Ctenóforos/classificação , Ctenóforos/genética , Variação Genética , Genética Populacional , Haplótipos , Mar Mediterrâneo , Filogenia , Filogeografia , Dinâmica Populacional
3.
Mar Pollut Bull ; 64(9): 1921-32, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22776776

RESUMO

The Berre Lagoon has been under strong anthropogenic pressure since the early 1950s. The opening of the hydroelectric EDF power plant in 1966 led to large salinity drops. The zooplankton community was mainly composed of two common brackish species: Acartia tonsa and Brachionus plicatilis. Since 2006, European litigation has strongly constrained the input of freshwater, maintaining the salinity above 15. A study was performed between 2008 and 2010 to evaluate how these modifications have impacted the zooplankton community. Our results show that the community is more diverse and contains several coastal marine species (i.e., Centropages typicus, Paracalanus parvus and Acartia clausi). A. tonsa is still present but is less abundant, whereas B. plicatilis has completely disappeared. Strong predatory marine species, such as chaetognaths, the large conspicuous autochtonous jellyfish Aurelia aurita and the invasive ctenophore Mnemiopsis leidyi, are now very common as either seasonal or permanent features of the lagoon.


Assuntos
Água do Mar/química , Poluição da Água/estatística & dados numéricos , Zooplâncton/crescimento & desenvolvimento , Animais , Biodiversidade , Clorofila/análise , Clorofila A , Monitoramento Ambiental , França , Humanos , Espécies Introduzidas/estatística & dados numéricos , Mar Mediterrâneo , Poluição da Água/análise , Zooplâncton/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...